What Are AI Agents? Concepts, Architecture & How They Work (2026)
An AI agent is a system that perceives its environment, reasons about it, and takes actions to achieve a goal — repeatedly, in a loop.
What Makes Something an “Agent”?
The minimal definition: a model + a loop + tools.
while not done: observation → LLM → action → execute → observationMost LLM chat interfaces are not agents — they’re single-turn request/response. An agent persists across turns, maintains state, and uses tools to affect the world.
The Agent Loop
Every agent runs some variation of the ReAct loop:
- Observe — receive input (user message, tool result, environment state)
- Think — reason about what to do next (the LLM’s job)
- Act — call a tool, execute code, or produce output
- Observe — receive the result and loop
# Simplified agent loopwhile not agent.is_done(): thought = llm.think(agent.context) action = thought.next_action result = tools.execute(action) agent.context.append(result)Core Architecture
┌─────────────────────────────────────────┐│ Agent System ││ ││ ┌─────────┐ ┌──────────────────┐ ││ │ Input │───▶│ LLM (Brain) │ ││ └─────────┘ └────────┬─────────┘ ││ │ ││ ┌───────────▼──────────┐ ││ │ Tool Dispatcher │ ││ └─┬──────┬──────┬─────┘ ││ │ │ │ ││ ┌────▼┐ ┌───▼─┐ ┌─▼────┐ ││ │ Web │ │Code │ │ API │ ││ │ Srch│ │Exec │ │Calls │ ││ └────┘ └─────┘ └──────┘ ││ ││ ┌──────────────────────────────────┐ ││ │ Memory / State │ ││ └──────────────────────────────────┘ │└─────────────────────────────────────────┘See Also
- Agent Patterns — Common design patterns for agent systems
- Tokens & Context — Managing context windows effectively